Machine Learning Project
نویسندگان
چکیده
In this dissertation, we examine the machine learning issues raised by the domain of anomaly detection for computer security. The anomaly detection task is to recognize the presence of an unusual and potentially hazardous state within the activities of a computer user, system, or network. “Unusual” is defined with respect to some model of “normal” behavior which may be either hard-coded or learned from observation. We focus here on learning models of normalcy at the user behavioral level. [4] Marcus A. Maloof. Machine Learning and Data Mining Computer Security. Springer, 2005. Machine Learning and Data Mining for Computer Security provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part
منابع مشابه
TBM Tunneling Construction Time with Respect to Learning Phase Period and Normal Phase Period
In every tunnel boring machine (TBM) tunneling project, there is an initial low production phase so-called the Learning Phase Period (LPP), in which low utilization is experienced and the operational parameters are adjusted to match the working conditions. LPP can be crucial in scheduling and evaluating the final project time and cost, especially for short tunnels for which it may constitute a ...
متن کاملBridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before softwa...
متن کاملمروری بر روشهای تخمین هزینه نرمافزار مبتنی بر یادگیری ماشین
Software project management software is the most important activity in software development, because it contains the whole software development process, from beginning to end. Software cost estimation is a challenge task in the software project management. It is an old activity in computer industry from 1940s and has been developed many times. Effort, only covers part of the cost of a software ...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملAutomated Essay Scoring Using Machine Learning
We built an automated essay scoring system to score approximately 13,000 essay from an online Machine Learning competition Kaggle.com. There are 8 different essay topics and as such, the essays were divided into 8 sets which differed significantly in their responses to the our features and evaluation. Our focus for this essay grading was the style of the essay, which is an extension on the stud...
متن کاملMLeXAI: BIOMEDICAL TERM CLASSIFICATION
Machine Learning is an important area of Artificial Intelligence which is generally applicable to almost any field of science. Early exposure of students to the potential of machine learning could have a positive impact on their attitude towards Artificial Intelligence in particular and computer science in general. In this paper, we present a semester long machine learning project that was inco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006